Tax avoidance and evasion in a dynamic setting

Duccio Gamannossi degl'Innocenti¹ Rosella Levaggi² Francesco Menoncin²

¹Università Cattolica del Sacro Cuore, Milano, Italy

²Università di Brescia, Brescia, Italy

1. Introduction

2. Model

3. Analysis

Intro

- $\cdot\,$ Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Significant losses of public revenues for evasion: 20% of GDP in Europe, under-reporting is \approx 18% in US with a tax gap of 500 billion
- Avoidance also a sizeable (£4.4 bn. in UK), when accounting for it the US tax gap goes to 1 trillion
- We develop a model to study the optimal evasion and avoidance decision in an inter-temporal setting

Related Literature

• Joint avoidance-evasion decision of crucial importance (Cross and Shaw 1981; 1982).

Several contributions in a static framework:

- Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
- Cowell (1990) investigates distributional impacts
- Neck (1990) studies interactions with labour supply
- Gamannossi and Rablen (2016;2017) explore the cases of bounded rationality and optimal enforcement

Contributions in a dynamic framework:

- Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion
- Levaggi and Menoncin (2012; 2013) identify determinants of Yitzhaki puzzle
- Bernasconi et al. (2015; 2019) study roles of uncertainty and habit

- Characterize optimal avoidance and evasion
- Analyze how deterrence instruments affect compliance
- Characterize optimal fiscal parameters for the government under various objectives (minimizing evasion, minimizing non-compliance, maximizing revenues and maximizing growth

Model

- The agent's utility increases in the consumption of a privately produced good c_t and a publicly produced good g_t
- The agent utility function is:

$$U(c_t) = \frac{(c_t - c_m)^{1-\delta}}{1-\delta} + v(g_t)$$

 c_t is consumption at time t

 c_m is the minimum consumption

 $v(\bullet)$ is an increasing and concave function

- The utility is HARA with risk-aversion $\frac{\delta}{c_t-c_m}$
 - Lower risk version when c_t is higher (DARA)
 - Higher risk aversion when either δ or c_m is higher

Modelling features and assumptions

- + Evasion is cost-less and carries a fine η if detected
- Avoidance is costly but entails a reduced fine $\eta(1 \beta)$ upon audit
- The fine reduction (β) leads to an avoidance premium
 - Avoidance premium depends on the the tax system and tax administration of the economy
 - Lower with simpler and less-ambiguous tax codes, when legal resources of tax authorities are higher and when courts have higher effectiveness
- \cdot Avoidance and evasion are both correctly detected upon audit
- The agent assumes no effect of the compliance decision on public good provision (fiscal illusion)

Capital Accumulation

The capital accumulated dk_t is equal to production minus expenses:

$$dk_{t} = [y_{t} - c_{t} - \tau y_{t} (1 - e_{t} - a_{t}) - f(a_{t}) y_{t}] dt -$$
(1)

 $\eta \tau y_t \left[e_t + (1 - \beta) a_t \right] d \Pi_t$

The capital accumulated dk_t is equal to production minus expenses:

$$dk_{t} = \left[\mathbf{y}_{t} - c_{t} - \tau y_{t} \left(1 - e_{t} - a_{t} \right) - f(a_{t}) y_{t} \right] dt -$$
(2)

 $\eta \tau y_t \left[e_t + (1 - \beta) a_t \right] d \Pi_t$

The capital accumulated dk_t is equal to production minus expenses:

$$dk_{t} = [y_{t} - C_{t} - \tau y_{t} (1 - e_{t} - a_{t}) - f(a_{t}) y_{t}] dt -$$
(3)

 $\eta \tau y_t \left[e_t + (1 - \beta) a_t \right] d \Pi_t$

The capital accumulated dk_t is equal to production minus expenses:

$$dk_{t} = [y_{t} - c_{t} - \tau y_{t} (1 - e_{t} - a_{t}) - f(a_{t}) y_{t}] dt -$$
(4)

$$\eta \tau y_t \left[e_t + (1 - \beta) a_t \right] d\Pi_t$$

Gamannossi, Levaggi and Menoncin

Evasion is expedient when:

$$\mathbb{E}_{t}\left[dk_{t}\right] > \mathbb{E}_{t}\left[dk_{t}\right]_{e_{t}=0} \Longleftrightarrow \eta\lambda < 1$$

Avoidance is expedient when:

$$\mathbb{E}_{t}\left[dk_{t}\right] > \mathbb{E}_{t}\left[dk_{t}\right]_{a_{t}=0} \Longleftrightarrow \frac{f(a_{t})}{a_{t}} < \left[1 - \eta\lambda\left(1 - \beta\right)\right]\tau,$$

that is satisfied if $f(a_t) < a_t \beta \tau$ when evasion is expedient

The optimization problem

$$\max_{\{c_t, e_t, a_t\}_{t \in [t_0, \infty[}} \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \frac{(c_t - c_m)^{1 - \delta}}{1 - \delta} e^{-\rho(t - t_0)} dt \right]$$

under the capital dynamic:

$$dk_{t} = [y_{t} - c_{t} - \tau y_{t} (1 - e_{t} - a_{t}) - f(a_{t}) y_{t}] dt - \eta \tau y_{t} [e_{t} + (1 - \beta) a_{t}] d\Pi_{t}$$
(9)

Analysis

Optimal solution

$$a^{*} = (f')^{-1}\tau\beta,$$

$$e_{t}^{*} = \frac{k_{t} - H}{\tau\eta A k_{t}} \left[1 - (\lambda\eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^{*},$$

$$c_{t}^{*} = c_{m} + (k_{t} - H) \left(\frac{\rho + \lambda}{\delta} + \psi \left\{ \frac{1}{\eta} + A \left[(1 - \tau) + \tau\beta a^{*} - f(a^{*}) \right] \right\} - \frac{1}{\eta} (\lambda\eta)^{\frac{1}{\delta}} \right)$$

$$a^{*} = \left[(f')^{-1} \tau\beta,$$

$$e_{t}^{*} = \frac{k_{t} - H}{\tau\eta A k_{t}} \left[1 - (\lambda\eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^{*},$$

$$c_t^* = c_m + (k_t - H) \left(\frac{\rho + \lambda}{\delta} + \psi \left\{ \frac{1}{\eta} + A \left[(1 - \tau) + \tau \beta a^* - f(a^*) \right] \right\} - \frac{1}{\eta} (\lambda \eta)^{\frac{1}{\delta}} \right)$$

Gamannossi, Levaggi and Menoncin

Tax avoidance and evasion in a dynamic setting

When $c_m = 0$ the solution to the consumer problem is:

$$a^* = (f')^{-1} \tau \beta,$$

$$e^* = \frac{1}{\tau \eta A} \left(1 - (\lambda \eta)^{\frac{1}{\delta}} \right) - (1 - \beta) a^*,$$

$$\frac{c_t^*}{k_t} = \left(\frac{\rho + \lambda}{\delta} + \psi \left\{ \frac{1}{\eta} + A \left[(1 - \tau) + \tau \beta a^* - f(a^*) \right] \right\} - \frac{1}{\eta} (\lambda \eta)^{\frac{1}{\delta}} \right)$$

Remarks about tax avoidance

Tax avoidance depends on its cost f, the avoidance premium β and the tax τ Is a constant share of income and does not depend on c_m Does not depend on risk-aversion nor on deterrence parameters η and λ

Evasion dynamics

Consumption dynamics

Capital dynamics

Comparative Statics

Table 1: Comparative statics for interior a^* , e_t^*

Where:

$$\mathbb{E}\left[dT_{t}\right] = \tau y_{t}\left(1 - e_{t}^{*} - a_{t}^{*}\right)dt + \eta y_{t}\tau\left[e_{t}^{*} + \left(1 - \beta\right)a_{t}^{*}\right]d\Pi_{t}$$

Gamannossi, Levaggi and Menoncin Tax avoidance and evasion in a dynamic setting When $c_m > 0$ the sign of $rac{\partial e_t^*}{\partial eta}$ is ambiguous, but if $c_m = 0$

$$\frac{\partial e_t^*}{\partial \beta} \stackrel{\geq}{=} 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \stackrel{\leq}{=} \frac{1}{1-\beta}.$$

- If $\frac{\partial a^*}{\partial \beta}$ is higher than a threshold, *e* is decreasing in β
- When β is big $\frac{\partial a^*}{\partial \beta}$ is higher so avoidance deterrence may increase evasion
- Relative to $c_m = 0$, when $c_m > 0$ the threshold is lower
 - More likely to have worsening of evasion

The sign of $\frac{\partial E_t^*}{\partial \tau}$ is ambiguous when either $c_m > 0$ or $c_m = 0$ but in the latter case it is:

$$\frac{\partial E_t^*}{\partial \tau} = \underbrace{-\frac{1}{\tau^2 \eta A} \left(1 - (\lambda \eta)^{\frac{1}{\delta}}\right)}_{<0} + \underbrace{\beta \frac{\partial (f')^{-1} \tau \beta}{\partial \tau}}_{>0}$$

- $\cdot\,$ When τ decreases, there are two effects:
 - The negative term (from evasion) becomes bigger in abs terms
 - The positive term (from avoidance) shrinks
- A rise in τ reduces E_t in economies with sufficiently high taxation

Also the sign of $\frac{1}{dt} \frac{\partial \mathbb{E}_t[dT_t]}{\partial \tau}$ is ambiguous when either $c_m > 0$ or $c_m = 0$ but the latter case provides some insights:

$$\frac{1}{dt}\frac{\partial \mathbb{E}_t\left[dT_t\right]}{\partial \tau} \gtrless 0 \iff \tau \lneq \frac{1 - \beta a_t^*}{\beta \frac{\partial a_t^*}{\partial \tau}}.$$

- The sign of the derivative is positive for low levels of τ and the sign switches (at least once) when τ increases
 - If f(a) is super-linear but not super-quadratic \Rightarrow one sign switch
 - If f(a) is super-quadratic \Rightarrow two sign switches
- In a real-world setting the model predicts a Laffer curve
- The sign-switching threshold is inversely related to β
 - The higher the β , the lower the tax rate from which increasing taxes reduces revenues

The expected growth rate of the modified capital is

$$\gamma^* := \frac{1}{\delta} \left((1-\tau) A - (\rho+\lambda) + \frac{1}{\eta} + (\tau \beta a_t^* - f(a_t^*)) A \right) - \left(1 - (\lambda \eta)^{\frac{1}{\delta}} \right) \lambda$$

and

$$\frac{\partial \gamma^*}{\partial \beta} = \frac{1}{\delta} \frac{\tau}{\eta} a_t^* A > 0$$

- A growth-maximizing government would chose $\beta^* = 1$
 - Somewhat implied by assuming a public good not increasing productivity

Fines and audits are ineffective against tax avoidance

Avoidance deterrence might increase evasion:

- 1. Avoidance premium:
 - Decreasing a high β reduces both avoidance and evasion
 - Decreasing a $\underline{low} \beta$ entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$
- 2. Tax rate:

Decreasing τ reduces avoidance but the increasing effect on evasion eventually lowers compliance and revenues

Negative effects can be sterilized using audit probability or fines

$$a^{*} = (f')^{-1} \tau \beta,$$

$$e^{*} = \frac{1}{\tau \eta A} \left(1 - (\lambda \eta)^{\frac{1}{\delta}} \right) - (1 - \beta) a^{*}.$$

Model insights about avoidance cost not practically relevant

- Increasing both *f* and *f'* would lower avoidance and evasion
- Avoidance cost cannot be told apart from legal costs of "intended" economic activity
- A reduction of β could be attained through
 - Simplifying the tax system
 - Reducing the extent of variation of tax treatments (deductions, exemptions and preferential treatments)
 - Specific anti-avoidance reforms at national and multi-national level

- We develop the first dynamic model entailing both avoidance and evasion
- Avoidance deterrence calls for the implementation of specific policies
- Avoidance deterrence might worsen evasion but this effect can be sterilized with audits and fines
- $\cdot\,$ The interactions between avoidance and evasion
 - Leads to the emergence of a Laffer curve
 - Provides a possible interpretation for the Yitzhaki puzzle

Thank you!

Questions?