INCOME TAX AVOIDANCE AND EVASION: A Narrow Bracketing Approach

21 September 2017

Duccio Gamannossi degl'Innocenti - Matthew D. Rablen

Introduction	The Model	Analysis	Conclusion
CONTENTS			

1. Introduction

2. The Model

3. Analysis

4. Conclusion

INTRODUCTION

Becker, 1968; Yitzhaki 1974 Economics of Crime applied to Tax Evasion

Alm, 1988; Alm & MCCallin 1990 First models considering both Avoidance and Evasion

Feldstein 1999 Taxonomy of Avoidance Schemes

Slemrod 2001 Impact of Avoidance on Leisure-Work Choice

Hoopes et al. 2012 Effectiveness of Anti-Avoidance Deterrence Provide a model where both **evasion** and **avoidance** are considered

Account for insights from **psychology** and **behavioural** economics

Analyse the impact of different **tax enforcement** instruments on **compliance**

THE MODEL

Introduction	The Model	Analysis	Conclusion
THE MODEL			

Evasion is costless but carries a fine if detected

Avoidance bought from promoters - "no saving, no fee"

Avoidance is costly but is not fined when detected

Taxpayers are heterogeneous in income

Taxpayers are risk averse (CRRA)

Multi-dimensional decisions tend to be **sequentially broken down** (Tversky and Kahneman 1981)

Salient traits of the decision determines **decision staging** (Kahneman 2003, McCaffery and Baron 2004)

Lawfulness of avoidance Vs **illegality** of evasion (Kirchler 2003, Barker 2009)

Modelling The Decision

Taxpayers exhaust the scope for legal avoidance before performing evasion:

The joint decision **{avoidance**, **evasion}** is sequentially decomposed into narrow brackets **{avoidance}** followed by **{evasion}**

Introduction	The Model	Analysis	Conclusion
MODEL			

Relevant Parameters and variables:

 $\label{eq:constraint} \begin{array}{l} w \; \text{Taxpayer exogenous income } [\overline{w}, \underline{w}] \\ t \in (0,1) \; \text{Linear Tax Rate} \\ \phi \in (0,1) \; \text{Linear fee on avoided tax} \\ f > 0 \; \text{Linear fine on evaded tax debt} \\ p \in (0,1) \; \text{Probability of audit} \\ A \in [0,w] \; \text{Avoided income} \\ E \in [0,w-A] \; \text{Evaded income} \\ x \; \text{Declared income} \end{array}$

If audited:

Evaded income is discovered Avoidance scheme is shut down with $p_L \in (0, 1]$

EXPECTED AFTER-TAX INCOME

Disposable income if not audited

$$\mathbb{E}[U](A, E) = [1 - p] U(w^{n}) + pp_{L}U(w^{a_{s}}) + p[1 - p_{L}] U(w^{a_{u}})$$

Where:

Taxpayer income if not audited $w^{n}(A, E) = w - t[w - A - E] - \phi tA$

Taxpayer income if audited upon successful legal challenge $w^{a_s}(A, E) = w - t[w - E] - [1 + f] tE - \phi tA$

Taxpayer income if audited upon unsuccessful legal challenge $w^{a_u}(A, E) = w - t[w - A - E] - [1 + f] tE - \phi tA$

ANALYSIS

Introduction	The Model	Analysis	Conclusion
TAXPAYER'S PROBLI	EM		

Taxpayer's optimal Avoidance and Evasion under Narrow Bracketing:

$$A^* = \arg \max_A \mathbb{E}[U] (A, 0)$$
$$E^* = \arg \max_E \mathbb{E}[U] (A^*, E)$$

We characterize first the simpler case where $p_L = 1$ At an interior optimum it is:

$$A^{*} = \frac{pR(t)}{1-\phi} [R(p) R(\phi) - 1] w$$
$$E^{*} = \frac{pR(t)}{1-\phi} \frac{[1-p] [1-fR(\phi)]}{f} w$$

Where R(z) = (1 - z)/z

Introduction	The Model	Analysis	Conclusion
SOME REMARKS			

The conditions for an interior optimum are:

D() D()

$$\begin{split} R(p)R(\phi) &> 1 > fR(\phi) \\ \frac{pR(t)}{1-\phi} \frac{[1-p][1-fR(\phi)] + f[R(p)R(\phi)-1]}{f} < 1. \end{split}$$

Avoidance and Evasion are linearly and negatively related

$$E^{*}(A^{*}) = \frac{p[wR(t) - \phi A^{*}][R(p) - f]}{f} - pA^{*}$$

COMPARATIVE STATICS

	A^*	E^*	$A^* + E^*$
w	+	+	+
t	—	—	_
f	0	—	—
ϕ	—	+	+/-
p	—	+/-	+/-

Comparative statics for interior A^* , E^* , $A^* + E^*$

Note that:

$$\frac{\partial E^*}{\partial z} = \frac{\partial E^*}{\partial z} \bigg|_{A^* = cons.} + \frac{\partial E^*}{\partial A^*} \frac{\partial A^*}{\partial z},$$

The "Yitzhaki Puzzle"

Comparative statics for interior A^{\ast} , E^{\ast} , A^{\ast} + E^{\ast}

COMPARATIVE STATICS

Comparative statics for interior A^* , E^* , $A^* + E^*$

And it is:

$$\frac{\partial E^*}{\partial p} = \frac{\left[R(p)-1\right]\left[1-fR(\phi)\right]}{R(p)+fR(\phi)}\frac{\partial E^*}{\partial A^*}\frac{\partial A^*}{\partial p}$$

For a constant expected return to evasion, evasion is reduced by increasing the fine rate and decreasing the audit probability (Christiansen, 1980)

Restricting the attention only to evasion the finding is confirmed

$$\left. \frac{\partial E^*}{\partial p} \right|_{p[1+f]-1=const.} > 0$$

However, a revenue maximizing tax agency is interested in:

$$\left. \frac{\partial [A^* + E^*]}{\partial p} \right|_{p[1+f]-1=\mathit{const.}} \gtrless 0$$

Fine rate only affects **evasion** while **audit probability** affects both **avoidance** and **evasion**

PROBABILISTIC ANTI-AVOIDANCE

Attempts to shut-down avoidance schemes may be unsuccessful Adopting the more realistic assumption $p_L \in (0, 1]$

Optimal avoidance (and its CS) is the same with $p \to pp_L$ $A^* = \frac{pp_L R(t)}{1-\phi} \left[R\left(pp_L\right) R\left(\phi\right) - 1 \right] w$

Optimal evasion is no longer analytically tractable

Further analysis by means of numerical optimization procedures confirms qualitative findings of CS on E^{\ast} and A^{\ast} + E^{\ast}

PROBABILISTIC ANTI-AVOIDANCE

Optimal avoidance and evasion for $p_L \in [0, 1]$.

PROBABILISTIC ANTI-AVOIDANCE

Optimal avoidance and evasion for $p_L < 1$ and $p_L = 1$.

CONCLUSION

CONCLUDING REMARKS

Tax **enforcement instruments are heavily affected** when avoidance and behavioural findings are accounted for

Evasion is negatively related to avoidance

Evasion and avoidance increase with income

FURTHER RESEARCH

Allow for imperfect audit effectiveness

Differentiate the market of avoidance schemes

Embed the model within a general equilibrium framework

Thank You!

Questions?