Tax avoidance and evasion in a dynamic setting

Duccio Gamannossi degl’Innocenti1
Rosella Levaggi2
Francesco Menoncin2

1Università Cattolica del Sacro Cuore, Milano, Italy
2Università di Brescia, Brescia, Italy
Table of contents

1. Introduction
2. Model
3. Analysis
4. Conclusion
Intro
Introduction

- Tax avoidance and evasion alter effective tax rates
- Tax systems differentiate between (legal) avoidance and (illegal) evasion but they both reduce revenues collected
- Evasion leads to sizeable revenue losses: 20% of GDP in Europe (Murphy 2019) (13% in Italy, Albarea et al. 2020) under-reporting is $\approx 18\%$ in US with a tax gap of 500 billion
- Avoidance also significant: 4% of GDP in Europe (EPRS, 2015), latest IRS and Treasury claim figures up to 500 billion
- We develop a model to study the optimal evasion and avoidance decision in an inter-temporal setting
• Contributions in a static framework (joint avoidance/evasion):
 • Cross and Shaw (1981; 1982) point out importance of joint analysis of avoidance-evasion
 • Alm (1988) and Alm and McCallin (1990) study the case of risk-less and risky avoidance
 • Cowell (1990) investigates distributional impacts
 • Neck (1990) studies interactions with labour supply
 • Gamannossi and Rablen (2016;2017) explore the cases of bounded rationality and optimal enforcement

• Contributions in a dynamic framework (only evasion):
 • Wen-Zhung and Yang (2001) and Dzhumashev and Gahramanov (2011) first models considering just evasion
 • Levaggi and Menoncin (2012; 2013) identify determinants of Yitzhaki puzzle
 • Bernasconi et al. (2015; 2019) study roles of uncertainty and habit
Research Goals

- Characterize optimal avoidance and evasion
- Analyze how deterrence instruments affect compliance and revenues
- Characterize optimal fiscal parameters for the government under various objectives
 - minimizing evasion
 - minimizing non-compliance
 - maximizing revenues
 - maximizing growth
Model
Modelling features and assumptions

Avoidance and evasion differ in their level of sophistication

- **Evasion is cost-less** and carries a fine η if detected
- **Avoidance costs** $f(a)$ but entails a reduced fine $\eta(1 - \beta)$ if detected
 - $f(a)$ increasing, convex and $f(0) = 0$
 - We call the fine reduction β the **avoidance premium**

Both f and β depend on the fiscal and tax administration specifics

- High avoidance cost and low avoidance premium when:
 - Tax code is simpler and less-ambiguous
 - Legal/investigatory resources of tax authorities are higher
 - Courts have higher effectiveness

Avoidance and evasion are **both correctly detected** upon audit

The agent suffers from **fiscal illusion**

- The effect of compliance on revenues is overlooked
Consumer’s preferences

The agent’s utility increases in the consumption of a *privately produced* good c_t and a *publicly produced* good g_t

The agent utility function is:

$$U = \left(\frac{c_t - c_m}{1 - \delta} \right)^{1-\delta} + v(g_t)$$

- c_m is a minimum consumption level
- δ drives concavity of utility from c_t
- $v(\bullet)$ is an increasing and concave function

Absolute risk-aversion $\frac{\delta}{c_t - c_m}$

- Lower risk aversion when c_t is higher (DARA)
- Higher risk aversion when either δ or c_m is higher
Capital Accumulation

The capital accumulated dk_t is equal to production minus expenses:

$$dk_t = [y_t - c_t - \tau y_t (1 - e_t - a_t) - f(a_t) y_t] \ dt - \eta \tau y_t [e_t + (1 - \beta) a_t] \ d\Pi_t$$

Production, y_t

- Deterministic function $y_t = Ak_t$, $0 < A < 1$ TFP

Expenses:

- Consumption, c_t
- Linear taxes on declared income $\tau y_t (1 - e_t - a_t)$
 - Share of income avoided a_t and evaded e_t
- Avoidance costs $f(a_t)$
- Fine costs
 - Fine in case of detection is $\eta \tau y_t [e_t + (1 - \beta) a_t]$
 - Audits follow a Poisson jump process $d\Pi_t$ with frequency λ
The optimization problem

\[
\max_{\{c_t, e_t, a_t\}_{t \in [t_0, \infty[}} \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \frac{(c_t - c_m)^{1-\delta}}{1-\delta} e^{-\rho(t-t_0)} dt \right]
\]

under the capital dynamics:

\[
dk_t = [y_t - c_t - \tau y_t (1 - e_t - a_t) - f(a_t) y_t] dt - \\
\eta \tau y_t [e_t + (1 - \beta) a_t] d\Pi_t
\]
Analysis
Optimal solution

\[a^* = (f')^{-1} \tau \beta, \]

\[e_t^* = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*, \]

\[c_t^* = c_m + (k_t - H) \left(\frac{\rho + \lambda}{\delta} + \frac{\delta - 1}{\delta} \left\{ \frac{1}{\eta} + A [(1 - \tau) + \tau \beta a^* - f(a^*)] \right\} - \frac{1}{\eta} (\lambda \eta)^{\frac{1}{\delta}} \right) \]

Where:

\[(f')^{-1} \]

Inverse of the marginal cost of avoidance

\[H := \frac{c_m}{A[\tau \beta a^* - f(a^*) + (1 - \tau)]} \]

PDV of future \(c_m \) discounted by TFP corrected by tax and avoidance
Evasion dynamics

Gamannossi, Levaggi and Menoncin

Tax avoidance and evasion in a dynamic setting

Gamannossi, Levaggi and Menoncin

Tax avoidance and evasion in a dynamic setting
Consumption dynamics

\[c_t/k_t = m = 0 \]

\[\text{Gamannossi, Levaggi and Menoncin} \]

\[\text{Tax avoidance and evasion in a dynamic setting} \]

\[\text{Years} \]
Tax avoidance and evasion in a dynamic setting
Comparative Statics

<table>
<thead>
<tr>
<th></th>
<th>a^*</th>
<th>e_t^*</th>
<th>$E_t^* = a^* + e_t^*$</th>
<th>$\mathbb{E}[dT_t]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>η</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>β</td>
<td>$+$</td>
<td>$+/-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>τ</td>
<td>$+$</td>
<td>$-$</td>
<td>$+/-$</td>
<td>$+/-$</td>
</tr>
</tbody>
</table>

$\frac{\partial \text{Col}}{\partial \text{Row}}$ Derivatives of column with respect to row

Where:

$$\mathbb{E}[dT_t] = \tau y_t (1 - e^*_t - a^*_t) dt + \lambda \eta \tau y_t [e^*_t + (1 - \beta) a^*_t] dt$$

are expected revenues collected:

- Revenues from declaration
- Expected revenues from enforcement
Comparative Statics - Remarks on β

The sign of $\frac{\partial e_t^*}{\partial \beta}$ is complex to study when $c_m > 0$

The case $c_m = 0$ offers some insights:

$$\frac{\partial e_t^*}{\partial \beta} \geq 0 \iff \frac{\partial a^*}{\partial \beta} \frac{1}{a^*} \leq \frac{1}{1 - \beta}.$$

- The sign of the derivative depends on the semi-elasticity $\frac{\partial a^*}{\partial \beta} \frac{1}{a^*}$
 - If the semi-elasticity is higher than a threshold, e is decreasing in β
 - The semi-elasticity is higher when β is bigger

Avoidance deterrence increases evasion in economies with higher avoidance premium

- When $c_m > 0$ the increase in evasion is more likely than if $c_m = 0$
Comparative Statics - Remarks on τ

Also for the sign of $\frac{1}{d_t} \frac{\partial E_t[dT_t]}{\partial \tau}$ assuming $c_m = 0$ provides some insights:

$$\frac{1}{d_t} \frac{\partial E_t[dT_t]}{\partial \tau} \geq 0 \iff \tau \leq \frac{1 - \beta a^*_t}{\beta \frac{\partial a^*_t}{\partial \tau}}.$$

Tax revenues display a Laffer curve behaviour

- When τ is low, raising τ increases revenues
- When τ is high, raising τ decreases revenues
- The higher the β, the lower the revenue-maximizing tax rate

An increase of τ has three impacts on revenues:

1. **Positive** - Marginal tax increase
2. **Positive** - Reduction of evasion
3. **Negative** - Increase in avoidance
Conclusion
Tax avoidance deterrence

Fines and audits are ineffective against tax avoidance ⇒ focus on f, β, τ

Avoidance costs f

- Increasing both f' and f lowers avoidance and evasion
- Two components of avoidance costs:
 - **Knowledge costs**: Effort/Expertise to identify the “loophole” to exploit
 - **Set-up costs**: To meet law requirements (e.g., creation of legal entities)
 - Cannot be told apart from those of “intended” economic activities

Avoidance deterrence need to focus on knowledge costs alone

Measures to deter avoidance through β and f

- Simplifying the tax system
 - Reducing the extent of variation of tax treatments
 - deductions, exemptions and preferential treatments
- Increasing the litigation budget of the tax administration
- Implementing anti-avoidance reforms at (multi)national level

Gamonnossi, Levaggi and Menoncin
Tax avoidance deterrence

Avoidance deterrence might increase evasion:

1. **Avoidance premium** β:
 - Decreasing a low β reduces both avoidance and evasion
 - Decreasing a high β entails an increase of evasion
 - Evasion increase is more likely when $c_m > 0$

2. **Tax rate** τ:
 - Decreasing τ reduces avoidance but the increasing effect on evasion eventually lowers compliance and revenues

Negative effects can be sterilized using audit probability or fines

\[
a^* = (f')^{-1} \tau \beta,
\]

\[
e^*_t = \frac{k_t - H}{\tau \eta A k_t} \left[1 - (\lambda \eta)^{\frac{1}{\delta}} \right] - (1 - \beta) a^*.
\]
Concluding Remarks

We develop the first dynamic model with joint avoidance/evasion interaction. Interaction of avoidance and evasion is of crucial importance:

- Lead to the emergence of a Laffer curve
- Provide a possible interpretation for the Yitzhaki puzzle

Avoidance deterrence requires specific policies:

- Reduction of β or increase of f
 - Long-run: Fiscal/judiciary reforms
 - Short-run: Increase of tax administration resources (legal)
 - Recent investments in data collection/analytics likely effective on evasion
 - Reduction of evasion might bolster avoidance
 - Need to balance deterrence activities

- Reduction of τ

Avoidance deterrence might entail unintended consequences
Thank you!

Questions?