TAX EVASION ON A SOCIAL NETWORK

Duccio Gamannossi degl'Innocenti¹ Matthew D. Rablen²

¹Catholic University of Milan

Swww.dgdi.me

²University of Sheffield and Tax Administration Research Centre www.sheffield.ac.uk/economics/people/rablen

INTRODUCTION

- → Tax evasion causes significant losses of public revenues (£4.4 bn. in UK)
- → Growing interest among tax authorities in how social attitudes to tax evasion are formed
- → "Big data" information systems potentially allow tax authorities to perceive social networks to an unprecedented degree
- → Predictive tools find patterns in data arising due to the determinants of subjects' decisions
- → We investigate the impact of social network on tax evasion decisions and develop a framework to asses the value of social network data
 - \rightarrow Is it worthwhile for a tax authority to invest in this technology?

LITERATURE

- → Standard model of tax evasion treats it as a private decision
- → More recent work allows for social interactions to affect compliance (Myles and Naylor, 1996 ; Hashimzade *et al.*, 2014; Goerke, 2013)

Limitations of Existing Literature

- → Taxpayers assumed to know aggregate-level statistics
- → Implicitly presupposes the network is the complete one
 - → but taxpayers may rely on heterogeneous "local" information
 - → Also ruling out **heterogeneity in social connectedness**
- → Other papers relax the complete network, but maintain other rigidities, i.e., fixed pattern of connectivity, undirected network

CONTRIBUTION

- → The social networks so far used in the literature seem to deviate importantly from real-world networks
- $\rightarrow~$ We study a model allowing for an **arbitrary network**
- → Local relative consumption externalities, heterogeneous across taxpayers
- → Theoretical underpinnings to **network equilibria**

Our analysis has focused on **two** questions:

- 1. Is it possible to characterize **optimal evasion** in presence of relative utility and how do **social interactions** affect it?
- 2. How much does the **availability of more information** (especially related to social network) improves the capacity of a tax authority to **infer audit revenue effects**?

PRELIMINARIES

- → Taxpayer *i* honest after-tax income $X_i = W_i \theta(W_i)$
- → Taxpayer **may evade** an amount of tax $E_i \in (0, \theta(W_i))$
- → Evasion is a **risky** activity:
 - → The tax agency is actively seeking to detect and shut-down evasion
 - → There is a compound probability p_i that:
 - → The taxpayer is discovered under declaring
 - → The tax agency is successful in shutting down evasion
- → The tax authoritiy levies a **fine** f > 1 proportional to the evaded tax debt upon successful action
- → Taxpayers care about relative utility
 - $\rightarrow~$ they benchmark consumption against a reference level R

$$\max_{E_{i}} \mathbb{E}(U_{i}) \equiv [1 - p_{i}] U(C_{i}^{n} - R_{i}) + p_{i} [U(C_{i}^{a} - R_{i})]$$

After-tax income **if not audited** $C_i^n \equiv X_i + E_i$ After-tax income **if audited** $C_i^a \equiv C_i^n - fE_i$ Utility is linear-quadratic $U(z) = z[b_i - \frac{a_i z}{2}]$

The Privately Optimal Evasion at an interior solution is:

$$E_i^* = \frac{1 - p_i f}{a_i \zeta_i} \{ b_i - a_i [X_i - R_i] \}$$

$$\zeta_i = [1 - p_i f]^2 + p_i [1 - p_i] f^2 > 0$$

ENDOGENISING REFERENCE CONSUMPTION

- → Observability of consumption summarised by a directed network (graph), where a link (edge) from taxpayer (node) *i* to taxpayer *j* indicates that *i* observes *j*'s consumption
- → Links are **subjectively weighted**
 - → some members of the reference group may be more focal comparators
- → **Network** of links is represented as an $N \times N$ (adjacency) matrix, G, of subjective comparison intensity weights $g_{ij} \in [0, 1]$,
- \rightarrow The weights satisfy

$$g_{\imath\imath} = 0; \qquad \sum_{\jmath \in \mathcal{R}_{\imath}} g_{\imath\jmath} = 1$$

→ The set of taxpayers whose consumption is observed by taxpayer *i* is termed *i*'s reference group, \mathcal{R}_i

A SIMPLE EXAMPLE

$$\begin{array}{cccc}
A & B & C \\
A & & \\
B & & \\
C & & \\
1 & 0 & 0 \\
\end{array} \equiv G
\end{array}$$

→ Reference consumption taken as the weighted average of expected consumption over the members of the taxpayer reference group \mathcal{R}

$$R_i = \sum_{j \in \mathcal{R}_i} g_{ij} \mathbb{E}\left(\tilde{C}_j\right)$$

Where:

$$\mathbb{E}\left(\tilde{C}_{j}\right) = [1-p_{j}] C_{j}^{n} + p_{j} C_{j}^{n}$$
$$= X_{j} + [1-p_{j}f] E_{j}$$

A SIMPLE EXAMPLE

Taxpayer interaction through the reference income leads to the rise of a network game

$$\begin{array}{ccc}
A & B & C \\
A & & \\
B & & \\
C & & \\
1 & 0 & 0 \\
\end{array} = G$$

$$\begin{cases} E_A^* &= \frac{1-p_i f}{a\zeta_A} \{a[R_A(E_B^*, E_C^*) - X_A] + b\} \\ E_B^* &= \frac{1-p_i f}{a\zeta_B} \{a[R_B(E_A^*) - X_B] + b\} \\ E_C^* &= \frac{1-p_i f}{a\zeta_C} \{a[R_C(E_A^*) - X_C] + b\} \end{cases}$$

Optimal evasion is defined by a linear system (due to linearity of R_i):

$$\begin{cases} E_A^* = \eta_i \{ a[R_A(h_A; E_B^*, E_C^*) - X_A] + b \} \\ E_B^* = \eta_i \{ a[R_B(h_B; E_A^*) - X_B] + b \} \\ E_C^* = \eta_i \{ a[R_C(h_C; E_B^*) - X_C] + b \} \end{cases} \equiv \mathbf{E} = \boldsymbol{\alpha} + \mathbf{ME}$$

Where *M* re-weights the social network *G* to account for differentials in expected returns from evasion and α weights the sum of paths from a taxpayer by his characteristics

The solution is in form of **weighted Bonacich centrality measure**:

$$\mathbf{E} = [\mathbf{I} - \mathbf{M}]^{-1} \boldsymbol{\alpha} = b(\mathbf{M}, 1, \boldsymbol{\alpha})$$

$$\mathbf{E} = b(\boldsymbol{M}, 1, \boldsymbol{\alpha})$$

- → Network centrality is a concept developed in sociology to quantify the influence or power of actors in a network
- → Multiple definitions: Bonacich centrality (Bonacich, 1987) relevant in our setting
- → More central taxpayers evade more

COMPARATIVE STATICS: LOCAL STRATEGIC COMPLEMENTARITY

- → The model exhibits strategic complementaries in evasion choices
 - → an increase in evasion by one taxpayer induces others to do likewise.
- → Formally, expected utility is supermodular in cross evasion choices:

$$\frac{\partial^2 \mathbb{E} (U_i)}{\partial E_i \partial E_j} = a_i g_{ij} [1 - p_i f] [1 - p_j f] > 0 \qquad j \in \mathcal{R}_i$$

→ How is optimal evasion impacted by information carried through the social network?

Evasion is higher if taxpayer's peers are richer

$$\frac{\partial E_{i}}{\partial W_{j}} = b_{1i} \left(\boldsymbol{M}, 1, \frac{\partial \alpha}{\partial X_{j}} \right) \geq 0$$

Evasion is lower if taxpayer's peers probability of audit is higher

$$\frac{\partial E_i}{\partial p_j} = b_{1i} \left(\boldsymbol{M}, 1, \frac{\partial \boldsymbol{M}}{\partial p_j} \mathbf{E} + \frac{\partial \alpha}{\partial p_j} \right) \leq 0.$$

→ Results can be strengthened to strict inequalities if G is connected

THE VALUE OF NETWORK INFORMATION

- → Observing links in social networks ought to help tax authorities to target better their limited audit resources
- → Can tax authorities observe links in social networks?
 - → Some individuals celebrities for whom it is common knowledge that many people observe them
 - → "big data"
- → The UK tax authority (HMRC) uses a system known as "Connect"
 - → cross-checks public sector and third-party information
 - → system produces "spider diagrams" linking individuals to other individuals and to legal entities such as "property addresses, companies, partnerships
- ightarrow IRS also known to have also invested in big data heavily
 - \rightarrow but much more reticent in revealing its capabilities

AUDIT TARGETING AND LIMITED NETWORK INFORMATION

- → Tax authority chooses **audit targets conditional** on observing each taxpayers' self-reported **income declaration** d_i
- → If tax authority observes G (and the remaining model parameters) it is able to correctly infer true incomes and **evasion**: $\hat{W}(d_i; G) = W_i$ and $\hat{E} = \theta(\hat{W}_i) \theta(d_i)$
- → If the tax authority **does not perfectly observe** G, but instead some (related) network G', **estimates** of the W_i will **be incorrect**: $\hat{W}(d_i; G') \neq W_i$ and $\hat{E}_i \neq E_i$
- → Suppose the tax authority observes only a subset of the links in the network
 - → $\kappa \in [0,1]$ is the **probability** that the tax authority **observes a given link** in the social network
 - → **Network observed** by the tax authority denoted $G(\kappa)$ generated by randomly deleting links (with probability 1κ)

- $\rightarrow~{\rm Audits}$ targeted to the $100\bar{p}\%$ of taxpayers with the **highest** \hat{E}
 - → Reminiscent of US "DIF score", and similar to UK audit selection rules
- → **Max audit revenues** when full-information on network: $\Re_{\max} = \Re(G(1))$
- → **Min audit revenues** when no-information is used in targeting (random auditing): $\Re_{RA} = fpE$
- → Metric used to assess value of **social network information**:

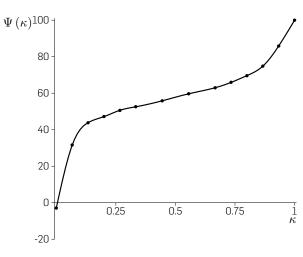
$$\Psi\left(\kappa\right)\equiv\frac{\Re\left(\boldsymbol{G}\left(\kappa\right)\right)-\Re_{RA}}{\Re_{\max}-\Re_{RA}}\times100.$$

- → Tax system is linear: θ (W) = θ W
- \rightarrow Power law distribution of income
- → Baseline parameter values

$$\rightarrow N = 200$$

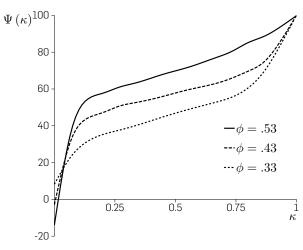
$$\rightarrow a = 2$$

- $\rightarrow b = 80$
- $\rightarrow pf$ calibrated to achieve evasion of 10%

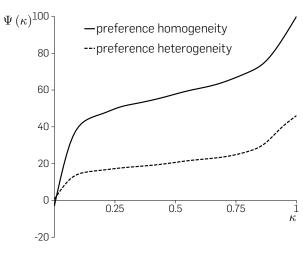

THE SOCIAL NETWORK

- → We generate a static network using the Bianconi-Barabási fitness model
 - → Node-fitness process: Taxpayers with higher wealth have a higher probability of making new connections
 - → *Preferential attachment* process: Taxpayers already **heavily connected** have a higher probability of making new connections (sublinear preferential attachment, $\phi < 1$)

The resulting **static** social networks used in our simulations resembles the ones observed empirically


FINDINGS - BASELINE EFFECTS

→ Initial efforts in collecting network information are characterized by high returns


FINDINGS - EFFECTS OF NETWORK STRUCTURE

- → The value of network information is higher if preferential attachment φ is stronger
- → Using predictive tools when little is know may be counterproductive in highly concentrated networks

FINDINGS - EFFECTS OF UNOBSERVED PREFERENCE HETEROGENEITY

→ Limited interaction between uncertainty over preference and uncertainty over the network

CONCLUSIONS

- → Our model provides a rich framework for understanding how information conveyed through a (arbitrary) social network influences optimal evasion behavior
- → We show that network information can be of value to a tax authority
 - → strong gains to knowing a little about the social network
 - → may actually be counterproductive to utilize highly incomplete network information
- → Some network information is especially important in highly concentrated networks

FURTHER RESEARCH

- → Introduce **habit** (memory) dependence in reference income
 - → Investigate dynamic response to audit interventions
 - → Study **direct and indirect effects** of audit interventions
- → Allow for an endogenous **dynamic network**
- $\rightarrow~$ Extend the analysis to **avoidance** and **crime** as a whole
- → Analyse how adding or **removing taxpayers** from the network (detention) may affect compliance

Thank You!

Questions?